Exercises 225

Observe that if a legal move changes X to Y, then A(Y) = A(X), B(Y) = B(X). This follows easily from the equation $\alpha^2 + \alpha + 1 = 0$, which in turn follows from the tables. Thus the pair (A(X), B(X)) is invariant under any sequence of legal moves.

The starting position X has A(X) = B(X) = 1. Therefore any position Y that arises during the game must satisfy A(Y) = B(Y) = 1. If the game ends with a single peg on (x,y) then $\alpha^{x+y} = \alpha^{x-y} = 1$. Now $\alpha^3 = 1$, so α has order 3 in the multiplicative group of nonzero elements of $\mathbb{GF}(4)$. Therefore x + y, x - y are multiples of 3, so x,y are multiples of 3. Thus the only possible end positions are (-3,0),(0,-3),(0,0),(0,3),(3,0). Experiment (by symmetry, only (0,0), the traditional finish, and (3,0) need be attempted; moreover, the same penultimate move must lead to both, depending on which peg is moved) shows that all five of these positions can be obtained by a series of legal moves.

EXERCISES

19.1 For which of the following values of n does there exist a field with n elements?

(*Hint:* See 'Mersenne primes' under 'Internet' in the References.)

- 19.2 Construct fields having 8, 9, and 16 elements.
- 19.3 Let ϕ be the Frobenius automorphism of $\mathbb{GF}(p^n)$. Find the smallest value of m > 0 such that ϕ^m is the identity map.
- Show that the subfields of $\mathbb{GF}(p^n)$ are isomorphic to $\mathbb{GF}(p^r)$ where r divides n, and there exists a unique subfield for each such r.
- 19.5 Show that the Galois group of $\mathbb{GF}(p^n)$: $\mathbb{GF}(p)$ is cyclic of order n, generated by the Frobenius automorphism ϕ . Show that for finite fields the Galois correspondence is a bijection, and find the Galois groups of

$$\mathbb{GF}(p^n):\mathbb{GF}(p^m)$$

whenever m divides n.

- 19.6 Are there any composite numbers r that divide all the binomial coefficients $\binom{r}{s}$ for $1 \le s \le r 1$?
- 19.7 Find generators for the multiplicative groups of $\mathbb{GF}(p^n)$ when $p^n = 8, 9, 13, 17, 19, 23, 29, 31, 37, 41, and 49.$
- Show that the additive group of $\mathbb{GF}(p^n)$ is a direct product of n cyclic groups of order p.

226 Finite Fields

- By considering the field $\mathbb{Z}_2(t)$, show that the Frobenius monomorphism is not always an automorphism.
- 19.10* For which values of n does \mathbb{S}_n contain an element of order $e(\mathbb{S}_n)$? (*Hint:* Use the cycle decomposition to estimate the maximum order of an element of \mathbb{S}_n , and compare this with an estimate of $e(\mathbb{S}_n)$. You may need estimates on the size of the nth prime: for example, 'Bertrand's Postulate', which states that the interval [n, 2n] contains a prime for any integer $n \ge 1$.)
- * (19.11*) Prove that in a finite field every element is a sum of two squares.
 - 19.12 Mark the following true or false.
 - (a) There is a finite field with 124 elements.
 - (b) There is a finite field with 125 elements.
 - (c) There is a finite field with 126 elements.
 - (d) There is a finite field with 127 elements.
 - (e) There is a finite field with 128 elements.
 - (f) The multiplicative group of $\mathbb{GF}(19)$ contains an element of order 3.
 - (g) $\mathbb{GF}(2401)$ has a subfield isomorphic to $\mathbb{GF}(49)$.
 - (h) Any monomorphism from a finite field to itself is an automorphism.
 - (i) The additive group of a finite field is cyclic.